
Exercises on Supergeometry

1. Define the tensor product A⊗B of two superalgebras A and B. Prove that if A and B are

commutative, then A⊗B is commutative too. Show that Λ(n)⊗ Λ(m) ' Λ(n+m).

2. Find the canonical forms of non-degenerate even symmetric, even skew-symmetric, odd

symmetric, odd skew-symmetric bilinear forms on the vector superspace Rn|m. Find the matrix

form of the Lie superalgebras preserving the corresponding structure (these Lie superalgebras

are denoted by osp(p, q|2k), ospsk(2k|p, q), pe(n,R), pesk(n,R), respectively). Prove that there

exist isomorphisms osp(p, q|2k) ' ospsk(2k|p, q), pe(n,R) ' pesk(n,R).

3. Find the canonical form of an odd complex structure on Rn|m. Find the matrix form of the

Lie superalgebra q(n,R) commuting with this structure.

4. Show that the representation of the simple Lie superalgebra vect(0|2,R) on the vector

superspace Λ(2) ' R2|2 is not irreducible and not totally reducible.

5. Construct the isomorphisms of the Lie superalgebras vect(0|2,R) ' sl(2|1,R), sl(2|1,C) '
osp(2|2,C). Which of the isomorphisms do exist: sl(2|1,R) ' osp(2|2,R), sl(2|1,R) ' osp(1, 1|2,R)?

6. Show that the real Lie superalgebra g spanned by the vector fields ∂x and D = −ξ∂x + ∂ξ

on R1|1 is nilpotent. Prove that its representation on the space spanR{ex, exξ} is irreducible.

7. Find all possible structures of the Lie superalgebra on g = g0̄ ⊕ g1̄, g0̄ = so(n,C), g1̄ = Cn.

8. Find all possible structures of the Lie superalgebra on g = g0̄⊕g1̄, g0̄ = sp(2m,C), g1̄ = C2m.

In particular, find the structure of the Lie superalgebra osp(1|2m,C).

9. Prove that str[K,L] = 0, where K,L ∈ Mat(n|m,A).

10. Let A be a commutative superalgebra with a unite. Let (A1̄) ⊂ A be the ideal generated by

A1̄. Show that (A1̄) = (A1̄)2 ⊕ A1̄. Consider the projection π : A→ A = A/(A1̄) = A0̄/(A1̄)2.

Prove that a ∈ A is invertible if and only if π(a) ∈ A is invertible.

11. Let π : Mat(n|m,A) → Mat(n|m,A) be the extension of the map π from the previous

exercise. Show that L ∈ Mat(n|m,A) is invertible if and only if π(L) ∈ Mat(n|m,A) is

invertible.

12. Let L =

(
L0̄0̄ L0̄1̄

L1̄0̄ L1̄1̄

)
∈ Mat(n|m,A) be even. Show that L is invertible if and only if

L0̄0̄ ∈ Mat(n,A) and L1̄1̄ ∈ Mat(m,A) are invertible.

13. Describe the morphisms R1|2 →M , where M is a smooth manifold.

14. Show that the Lie superbracket of two left-invariant vector fields on a Lie supergroup is a

left-invariant vector field.

15. Show that the map µ : R1|1 × R1|1 → R1|1 given by

µ∗(x) = x′ + x′′ + ξ′ξ′′, µ∗(ξ) = ξ′ + ξ′′
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defines the structure of a Lie supergroup on the supermanifold R1|1. Find the antipode map

i : R1|1 → R1|1.

16. Show that the Lie superalgebra corresponding to the Lie supergroup R1|1 from the previous

exercise is spanned by the vector fields ∂t and −ξ∂t + ∂ξ.

17. Let M and N be supermanifolds. Describe M×N using the functor of points.

18. Let G be a supermanifold. Prove that G is a Lie supergroup if and only if G(S) is a group

for any supermanifold S, and G(α) : G(S)→ G(T ) is a group homomorphism for any morphism

α : T → S.

19. Which supermanifold M defines the following functor of points: M(S) = C∞S (S),

M(α) = α∗?

20. Which supermanifold M defines the following functor of points: M(S) = C∞S (S) ⊗ Rn|m,

M(α) = α∗ × idRn|m?
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